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APPENDIX V - SAFETY (U)

v-1., (U) PURPOSE.

a. (U) Substudy. This substudy is a portion of the Trade-Off Analysis
(TOA) devoted to the Light Helicopter Family (LHX) projected for inclusion in
the US Army inventory by 1995. In general, this appendix will examine design
features that are likely to be critical to the safety of the LHX candidates,
It will further examine these features and attempt to project both associated
accident rates and costs. Implicit in such an examination is the implied
assumption that those features that result in fewer accidents are highly
desirahle from a safety point of view. However, it is also noted that each
feature will have assoclated costs (and projected cost savings) that must be
considered. .

b. (U) Essential Elements of Analysis,

(1) (U) Which critical design features should be incorporated in an
LHX candidate to reduce the projected accident rates and 20-year accident
costs?

(2) (U) What is the minimum acceptable level of crashworthiness?
(3) (u) (B-13) Should the LHX have one or two engines?
(4) (u) (B-22) Should the LHX have a one- or two-member crew?

(5) (u) (B-25) What are the safety implications for each subsystem
and system under consideration?

V-2, (U) BACKGROUND. The Trade-Off Determination (TOD) Board conducted a
study to establish the expected economic losses due to aircraft accidents for
a wide range of LHX candidate aircraft. The candidates and their design
features are summarized in annex II, A 5-year, class A accident baseline (see
annex III) was used to project accident rates. The projected accident rates
and 20-year accident costs determined by the TOD Board are contained in

annex IV, The relative magnitude of these rates and 20-year costs provide an
indication of the influence of various design features in these candidates,

V-3, (U) ASSUMPTIONS.
a. (U) Losses were projected for peacetime operation,
b, (U) Losses were based on constant fiscal year (FY) 84 dollars,

c¢. (U) For retractable gear aircraft, the gear was assumed tc e down
during the accident,
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d. (U) A utilization rate of 240 hours per aircraft per year was used.

e. (U) Losses were based on aircraft acquisition costs and fleet sizes
shown in annex V.

f. (U) Only class A accidents were used by the TOD Board.

V-4, (U) LIMITATIONS. This analysis does not include quantification of the
cost and weight penalties which result from incorporation of the critical
design features or a minimum crashworthiness level.

V-5. (U) METHOD. The TOD Board determined that selected critical design
features will significantly reduce accident costs and rates. Analysis of the
TOD data indicates that the ranking of the LHX baseline and its variationus was
a function of the critical features which each variation possessed, The
Trade-Off Analysis (TOA) approach is to incorporate safety design features
intc a candidate rather than selecting the safest candidate. This method
zives greater flexibility to the TOA Board so that performance can be the
ultimate criterion,

v-6. (U) RESULTS/ANALYSIS,

a, (U) The features summarized in figure V-1 should be incorporated into
any LHX design, Each of these features would contribute to a reduction of
hardware and personuel losses in the proposed LHX.

b. (U) One cannot reasonably expect that incorporation of these features
would result in the complete elimination of all accidents, The statistics are
cited to demonstrate potential accident reduction if the design features are
completely effective in eliminating the baseline accident causes.

c. (U) Any deletion or reduction in the effectiveness of these design
features will result in an increase in the projected accident rates and costs
for the LHX. In some cases, the increase in accident rates and costs will be
small and may be justifiable when compared to the cost/weight required to
achieve a particular design feature. A decision to trade off by deleting or
reducing the effectiveness of a feature should only be made after con-
sideration of the associated risk,

(1) (U) Twin engine with one-engine inoperative (OEI) flight capa-
bility, The largest single contributor to accident costs in the areas of
materiel or design deficiency is engine failure in single-engine helicopters.
Unsuccessful real and practice autorotations are also significant accident
types for single-engine helicopters. These accidents would be substantially
reduced by twin-engine design., The TOD Board determined that a 55.9-percent
scout-attack (SCAT)/38.,4-percent utility reduction in projected 20-year acci-
dent costs could be realized by incorporating a twin-engine design with an
OEL. Twin engines without an OEI would result in reductions of 6.4-perceat
SCAT/ 3.9-percent utility (see figure V-1IV-ll).

V-4
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Crashworthiness
(Modified Military Standard
Flight Safety (MIL-STD) 1290)
Twin engines with an OEI flight Crashworthy fuel systems
capability
High mass item retention
v Effective antitorque control
under all mission flight High energy absorption gear (fixed
environments or automatic extension) and
.. fuselage
No tail r-tor or a high degree
of protection for the tail rotor Crew seat and restraint system
Visionics system for reduced Troop seat and restraiant system
visibility

Noninjurious cockpit environment

Wire strike protection system (WSPS)
Emergency locator transmitter

Backup or redundant flight (ELT)
control system

Wheeled landing gear

Rigid or articulated rotor heads
to eliminate mast bumping

Maintenance and flight data recorders

Performance planning computer

Automated systems to reduce pilot UNCLASSIFIED

workload

Figure V-1, (U) Design features critical for reducing accidents.
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(2) (U) Effective antitorque control under all mission flight
envelopes, This feature will eliminate accidents due to loss of tail rotor
authority., Anticipation by the TOD Board that the LHX would be adequately
designed to minimize this problem was a major factor in reduction of the
accident rate of the base data SCAT to the LHX baseline helicopter SCAT from
4,46 to 1.86 (see figure V-1V-1).

(3) (U) No tail rotor or a high degree of protection for the tail
rotor. The benefits of shielding or eliminating the tail rotor were quan-
tified by the TOD Board. Figures V-1IV-ll and V-1V-12 show there is a direct
correlation between the amount of protection provided to the tail rotor and
the reduction of accident costs, The ring fin-type tail rotor with the small
amount of protection showed an accident coust reduction of 16.8-percent
SCAT/6.9-percent utility., The fan in the fin-type tail rotor, which provides
a high degree of protection, showed savings of 25.5-percent SCAT/12.0-percent
utility. The no tail rotor type of antitorque system showed a reduction of
42,6~percent SCAT/2l.l-percent utility,

(4) (U) vVisionics system for reduced visibility. The benefit of
such a system would be in its ability to penetrate clouds, fog, battlefield
obscurants, blowing dust, and snow for a minimum of 200 meters., The TOD Board
noted that such a system decreases the accident rate associated with inad-
vertent instrument meteorological condition (IMC) by approximately 10 percent
(see figure V-I11-2). Care should be exercised to ensure such a visionics
system 1s reliable and adequate attention is paid to the man-machine interface
or the accident rate may actually increase.

(5) WSPS. The TOD Board determined an adequate WSPS would account
for a 16.1-percent SCAT/20.l-percent utility reduction in the accident rate
for the LHX (see figures V-IV-ll and V-1IV-12), The low cost of such a4 system
indicates that the prevention of just one class A LHX accident would pay for
the fleet installation,

(6) (U) Backup or redundant flight control. The TOD Board deter-
mined a potential accident reduction of 6 percent could be realized with
redundant or backup flight controls on the present fleet (see figure V-111-2),
For the LHX, this feature will be extremely critical since fly-by-wire or fly-
by-light systems are being considered. If no backup system is used, the
redundancy must be complete throughout the flight control system. The routing
of control lines must be devised to prevent simultaneous interruption of each
redundant system,

(7) (U) Wheeled landing gear (fixed or automatic gear extension).
Skids tend to get caught in the trees, runways, or obstructions (such as
wires), The TOD Board determined a 3,2-percent reduction in accident rates
could be achlieved 1f such accidents were eliminated (see figure V-111-2),
Wheel-type gear are much less likely to get caught.

(8) (U) Rigid or articulated rotor heads to eliminate mast bumping.
The elimination by design of potential mast bumping caused by pilot input (not
flight control system faflure) would reduce accident rates by approximately
4 percent (see figure V-1II-2),
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(9) (U) Maintenance and flight data recorders, With the projected
increase in complexity of the LHX, it will become increasingly difficult to
establish the cause of the accident, thus preventing corrective actions,
Currently, 11 percent of all accidents are unsolved. A much greater
percentage of LHX accidents may be unsolved without the incorporation of
flight data/maintenance recorders, The TOD Board noted that 20-year savings
of $237 million (FY 82 dollars) could be expected for the AH-64 if such
recorders were installed, The LHX savings would be at least as great. There
would be additional cost savings not included in thr AH-64 figure from reduc-
tions in unnecessary maintenance actions and cost savings from the iden-
tification of maintenance problems that would otherwise escape attention,

(10) (U) Performance planning computer. A performance planning com-
puter will aid in the elimination of accidents caused by the crew placing the
aircraft in situations that require power in excess of system llmits, The
present system for performance planning is cumbersome at best. As greater
perfomnance requirements are established due to the air-to-air combat mission,
the crew will need a more sophisticated method of performance plauning. An
automated system is an excellent method of relieving the crew of an arduous
task.,

(11) (U) Automated systems to reduce pilot workload. Such systems
must be "user friendly" so as not to reduce the number of tasks only to
increase the complexity of those tasks which remain. Graceful degradation of
electronic systems should be used to ensure aircrat® control remains the
highest priority,

(12) (U) Crashworthiness,

(a) (U) Modified MIL-STD-1290 level of crashworthiness. The TOD
Board reported that a relaxation of the level of crashworthiness from a
42-feet-per-second (ft/sec) vertical rate of descent throughout the
20 degrees (©) by 20° pitch and roll (20 x 20 P&R) envelope, as currently
required by MIL-STD-1290, to 42 ft/sec for a 10 x 10 P&R and down to 36 ft/sec
for the remainder of the 20 x 20 P&R envelope had no effect on the projected
accident rates for either version of the LHX. This was a result of the fact
that no class A accidents which occurred during the 5-year baseline used in
th: TOD occurred in the boundary between the 10 x 10 and 20 x 10 P&R
envelopes, Based on this data, it appears that a relaxation to the modified
MIL-STD-1290 level of crashworthiness would have little, if any, effect on
future accident rates,

(b) (U) The TOD Board recommended a TOA methodology which required
the selection of the characteristics for landing gear, airframe, and seats.
This methodulogy was rejected. A system approach to crashworthiness should be
used to attain a modified MIL-STD-1290 level of crashworthiness. This
approach conforms to the performance-oriented nature of the LHX and allots a
degree of flexibility to the developer, 1t permits trade-off between the
crashworthiness of the landing gear, airframe, and seats so as to ensure the
reduction of crash forces which reach the occupants to a level consistent with
the requirements of modified MIL-STD-1290,
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(¢) (U) The LHX baseline aircraft with a UH-60/AH-64 crashworthiness
level performed well when put into the crash conditions of the baseline acci-
dent aircraft, The TOD baseline accident data is derived primarily from
aircraft with performance levels similar to the UH-1/AH-1 (see figure
V-11I-1), Only a few UH-60 accidents were available to include in the acci-
dent baseline. As a rule, the UH-60 crashes are much "harder" (i.,e., greater
impact velocities, etc,) than the UH-1/AH-1 crashes, due primarily to the
grzater performance capabilities (higher autorotative sink rates) of the
Uii-60. It is reasonable to expect that the LHX will crash under conditions
even more extreme than the UH-60 due to the anticipated increase in perfor-
mance. Therefore, in order for the LHX to achieve the same level of effec-
tiveness despite more extreme crash conditions, the level of crashworthiness
must also be increased. An increase to the level of the modified MIL-STD-1290
should compensate for the expected performance increase, Ut is recommended
that the LHX performance capabilities be analyzed in order to establish
expected crash conditions so that the recommended modified MIL-STD-1290 level
of crashworthiness can be empirically validated.

(d) (uU) Crashworthiness design features.

l. (U) Crashworthy fuel system, This feature has been proven effec-
tive in many previous aircraft designs. Any external fuel systems for the LHX
should be designed to MIL-T-27422B. No relaxation of this standard should be
allowed, Any external fuel tanks considered for use on the LHX should also be
adequately crashworthy,

2. (U) High mass item retention., High mass items, particularly
those above the crew or passenger area, should not break loose during any
crash sequence as defined by MIL-STD-1290., The attachment parts of such items
must, therefore, be appropriately strengthened.

3. (U) High energy absorption gear (fixed or automatic extension)
and fuselage, The LHX should, as a goal, meet the level of crashworthiness as
outlined in MIL-STD-1290, It appears, however, that trade-offs to a modified
version of MIL-STD-1290 level of crashworthiness are the most desirable
approach to providing for crew survivability., Fixed or automatic landing gear
extension is a desirable feature to ensure gear extension during a crash
sequence and to preclude the failure of the pilot to extend the gear prior to
landing. Any automatic gear extension feature will require some function time
for the gear to extend; therefore, partially extended or gear-up crashes can
be anticipated. The ultimate level of crashworthiness will be heavily
dependent on the status of the gear on impact. If a design incorporating
retractable gear with automatic extension is selected, the airframe and seats
must be sufficiently crashworthy to prevent fatalities and to minimize
injuries in impacts where the gear is fully or partially retracted. The
airframe should provide energy attenuation in the subfloor, allow retention of
high mass items, and provide a protective shell for the occupant.

4. (U) Crew seat and restraint system, This feature has a tremen-

dous impact on the number and severity of injuries associated with a crash and
should conform to MIL-STD-58095. The technology for the Inflatable Body and
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Head Restraint System (IBAHRS) should be developed so that the system can be
incorporated into the THX,

5, (U) Troop seat and restraint system, Premature failure of troop
seats has been a problem in many utility aircraft, including the UH-60. Troop
seats should be designed to meet MIL-STD-85510, 1If roof-mounted, particular
attention should be given to crash loads on roof structures to prevent
premature collapse.

6. (U) Noninjurious cockpit environment., The cockpit environment
should be designed so that a restrained crewmember will not be subjected to
injury due to a cockpit feature. Control configurations that allow the pilot
to maintain proper posture (back support and arm rest) should be used in order
to reduce the incidence and severity of lower back pain associated with con-
ventional flight coatrol systems. Conventional control systems tend to cause
the pilot to lean forward, thus failing to provide adequate lower back sup-
port, The lilkelihood that the cockpit will be as compact as current designs
increases the need for the TBAHRS in order to minimize the occupant's crash
impact motion envelope,

7. (U) ELT. The weight and cost penalties are small compared to the
added benefit of reducing the time that the survivors have to spend on the
ground beforz r=2scue,

d. (U) There are two issues which have generated a debate in the
development/user community as to thelr effectiveness versus cost, Decisions
on the minimum acceaptable approach to these features/issues can only be made
after a careful risk analysis,

(1) (U) Une versus two crewmembers.

(a) (U) No conclusion has been reached by the TOD Board on this
f3sue due to the limited accident data available. Crew work overload has been
identified as a significant hazard and a 'driver" of pilot error-associated
accidents, The removal of the second crewmember would require the automation
of his workload so as not to overload the remaining crewmember, It may be
feasible to reduce this workload through automated systems such as voice acti-
vated systems, automatic fire control, etc, Crucial to this analysis is
whe ther the current state of technology allows the necessary workload reduc-
tion. Systems which are designed to perform tasks normally associated with
the second crewmember must be designed so as not to overload a single
cre:wsmember even when the system is in a failure mode or operating with
degraded capability., It ls the opinion of the TOA Board that curreat tech-
nology is not sufficiently sophisticated to meet these safety requirements,

In addition, the second crewmember reduces the likelihood of aun accident since
he is able to validate the actions of the pilot., He provides a second set of
eyes to watch for unsafe acts or conditions which might ordinarily be
overlooked by a single crewmember and thus lead to an accident., Unless the
single crewmember concept can be empirically demonstrated, the LHX should be
planned for two crewmembers,

V-9
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(b) (U) It is not necessary for both crewmembers to be rated pilots;
however, redundancy of flight controls would be desirable for training and
survivability considerations, Consideration should be given to training the
nonrated crewmember to make emergency visual flight rule (VFR) approaches and
landings. It is imperative that the second crewmemhber be adequately trained
to perform his duties. Insufficient training of the second crewmember leads
to pllot work overload and accidents,

(2) (U) One versus two engines., The reduction in projected accident
rates and costs associated with two engines with an OEI capability is con-
tained in annex IV, Power-off, autorotative flight performance would become
an important characteristic if a single-engine LHX were selected. This per-
formance characteristic is heavily dependent on the aircraft configuration
but, within certain bounds, is determined by detailed aircraft design require-
ments, The power-off performance for a single-engine LHX must be adequate to
allow autorotative descent and landing to level terrain without damage. The
TOA Board concluded that a single engine LHX is not acceptable due to the
magnitude of the accident rates and costs associated with single-engine
aircraft.

v-7. (U) FINDINGS.
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